4.7 Article

Optimization of ultrasound parameters for cardiac gene delivery of adenoviral or plasmid deoxyribonucleic acid by ultrasound-targeted microbubble destruction

期刊

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/S0735-1097(03)00627-2

关键词

-

资金

  1. NHLBI NIH HHS [K24 HL03980] Funding Source: Medline
  2. NIDDK NIH HHS [P01 DK58398] Funding Source: Medline

向作者/读者索取更多资源

OBJECTIVES This study was undertaken to optimize echocardiographic parameters for successful gene delivery to the heart and to extend the method from adenoviral to plasmid deoxyribonucleic acid (DNA). BACKGROUND We have previously shown that ultrasound-targeted microbubble destruction can direct tissue expression of adenoviral transgenes to the heart. The optimal echocardiographic parameters for this technique have not been reported. METHODS Adenoviral or plasmid DNA encoding the luciferase reporter gene was incorporated into liposome microbubbles and infused intravenously into anesthetized rats. We systematically evaluated the effects of ultrasound parameters known to influence microbubble destruction, including electrocardiogram (ECG) triggering, ultrasound frequency, mode of ultrasound, and mechanical index, on gene expression in rat myocardium four days after treatment. In addition, gene expression in heart, liver, and skeletal muscle were compared between adenoviral and plasmid DNA. RESULTS Optimal ultrasound parameters for this technique include low-transmission frequency (1.3 MHz), maximal mechanical index, and ECG triggering to allow complete filling of the myocardial capillary bed by microbubbles. No difference was seen between ultraharmonics and power Doppler mode. Using adenoviral DNA, optimal ultrasound parameters yielded myocardial luciferase activity on the order of 10(4) relative light units/mg protein/min but with even higher liver activity. Plasmid DNA was expressed in rat myocardium at similar levels but without detectable liver expression. CONCLUSIONS Ultrasound-targeted microbubble destruction can be used to deliver adenoviral or plasmid DNA to the myocardium. This technique holds great promise in applying the rapidly expanding repertoire of gene therapies being developed for cardiac disease. (C) 2003 by the American College of Cardiology Foundation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据