4.6 Article

Gain of glutaminase function in mutants of the ammonia-specific frog carbamoyl phosphate synthetase

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 278, 期 29, 页码 26722-26726

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M303774200

关键词

-

资金

  1. NIDDK NIH HHS [DK54423] Funding Source: Medline

向作者/读者索取更多资源

Depending on their physiological role, carbamoyl phosphate synthetases (CPSs) use either glutamine or free ammonia as the nitrogen donor for carbamoyl phosphate synthesis. Sequence analysis of known CPSs indicates that, regardless of whether they are ammonia- or glutamine-specific, all CPSs contain the structural equivalent of a triad-type glutamine amidotransferase ( GAT) domain. In ammonia- specific CPSs, such as those of rat or human, the catalytic inactivity of the GAT domain can be rationalized by the substitution of the Triad cysteine residue by serine (1). The ammonia- specific CPS of Rana catesbeiana (fCPS) presents an interesting anomaly in that, despite its retention of the entire catalytic triad (2) and almost all other residues conserved in Triad GATs, it is unable to utilize glutamine as a nitrogen-donating substrate (3). Based on our earlier work with the glutamine-utilizing E. coli CPS (eCPS), we have targeted residues Lys(258) and Glu(261) in the fCPS GAT domain as critical for preventing GAT function. Previously we have shown that substitution of the corresponding residues in eCPS by their fCPS counterparts (Leu --> Lys and Gln --> Glu) resulted in complete loss of GAT function in eCPS (3). To examine the role of these residues in the fCPS GAT component, we have cloned the full-length fCPS gene from R. catesbeiana liver. Here we report the first heterologous expression of an ammonia- specific CPS and show that a single mutation of the frog enzyme, K258L, yields a gain of glutaminase function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据