4.8 Article

Interactions between synaptic vesicle fusion proteins explored by atomic force microscopy

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1533137100

关键词

-

向作者/读者索取更多资源

Measuring the biophysical properties of macromolecular complexes at work is a major challenge of modern biology. The protein complex composed of vesicle-associated membrane protein 2, synaptosomal-associated protein of 25 kDa, and syntaxin 1 [soluble N-ethyl-maleimide-sensitive factor attachment protein receptor (SNARE) complex] is essential for docking and fusion of neurotransmitter-filled synaptic vesicles with the presynaptic membrane. To better understand the fusion mechanisms, we reconstituted the synaptic SNARE complex in the imaging chamber of an atomic force microscope and measured the interaction forces between its components. Each protein was tested against the two others, taken either individually or as binary complexes. This approach allowed us to determine specific interaction forces and dissociation kinetics of the SNAREs and led us to propose a sequence of interactions. A theoretical model based on our measurements suggests that a minimum of four complexes is probably necessary for fusion to occur. We also showed that the regulatory protein neuronal Sec1 injected into the atomic force microscope chamber prevented the complex formation. Finally, we measured the effect of tetanus toxin protease on the SNARE complex and its activity by on-line registration during tetanus toxin injection. These experiments provide a basis for the functional study of protein microdomains and also suggest opportunities for sensitive screening of drugs that can modulate protein-protein interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据