4.8 Article

Gene expression of a gene family in maize based on noncollinear haplotypes

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1032999100

关键词

z1C zein gene cluster; heterosis; genomic organization; overdominance; transposition

向作者/读者索取更多资源

Genomic regions of nearly every species diverged into different haplotypes, mostly based on point mutations, small deletions, and insertions that do not affect the collinearity of genes within a species. However, the same genomic interval containing the z1C gene cluster of two inbred lines of Zea mays significantly lost their gene collinearity and also differed in the regulation of each remaining gene set. Furthermore, when inbreds were reciprocally crossed, hybrids exhibited an unexpected shift of expression patterns so that overdominance instead of dominance complementation of allelic and nonallelic gene expression occurred. The same interval also differed in length (360 vs. 263 kb). Segmental rearrangements led to sequence changes, which were further enhanced by the insertion of different transposable elements. Changes in gene order affected not only z1C genes but also three unrelated genes. However, the orthologous interval between two subspecies of rice (not rice cultivars) was conserved in length and gene order, whereas changes between two maize inbreds were as drastic as changes between maize and sorghum. Given that chromosomes could conceivably consist of intervals of haplotypes that are highly diverged, one could envision endless breeding opportunities because of their linear arrangement along a chromosome and their expression potential in hybrid combinations (binary systems). The implication of such a hypothesis for heterosis is discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据