4.7 Article Proceedings Paper

Friction characteristics of a potential articular cartilage biomaterial

期刊

WEAR
卷 255, 期 -, 页码 1064-1068

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/S0043-1648(03)00113-3

关键词

friction; cartilage; poly(vinyl-alcohol); biomaterials

向作者/读者索取更多资源

Many biomaterials are being developed to repair or replace articular cartilage. One of these materials, a poly(vinyl-alcohol) cryogel (PVA-c) may exhibit the mechanical properties required to withstand the harsh environment of diarthrodial joints. To better understand how PVA-c friction is affected by different variables employed in bench top testing to simulate joint conditions, a six-factor, two-level fractional-factorial experiment was developed. Factors included temperature, lubricant, material stiffness, load, sliding speed, and surface roughness. Static and dynamic friction were found to depend significantly on material stiffness and roughness, increasing as material stiffness and roughness increased. Dynamic friction was also inversely proportional to sliding speed. Overall static and dynamic friction for all variables was 0.285 +/- 0.091 and 0.143 +/- 0.066 (average +/- S.D.), respectively. Material deformation and other factors may have contributed to the higher than expected friction levels. Frictional behavior of this PVA-c against stainless steel does not follow Amonton's friction law, nor does it follow friction models based on repulsion and adsorption theories. (C) 2003 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据