4.7 Article

An EM algorithm for wavelet-based image restoration

期刊

IEEE TRANSACTIONS ON IMAGE PROCESSING
卷 12, 期 8, 页码 906-916

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIP.2003.814255

关键词

Bayesian estimation; expectation-maximization algorithm; image deconvolution; image restoration; penalized maximum likelihood; wavelets

向作者/读者索取更多资源

This paper introduces an expectation-maximization (EM) algorithm for image restoration (deconvolution) based on a penalized likelihood formulated in the wavelet domain. Regularization is achieved by promoting a reconstruction with low-complexity, expressed in the wavelet coefficients, taking advantage of the well known sparsity of wavelet representations. Previous works have investigated wavelet-based restoration but, except for certain special cases, the resulting criteria are solved approximately or require demanding optimization methods. The EM algorithm herein proposed combines the efficient image representation offered by the discrete wavelet transform (DWT) with the diagonalization of the convolution operator obtained in the Fourier domain. Thus, it is a general-purpose approach to wavelet-based image restoration with computational complexity comparable to that of standard wavelet denoising schemes or of frequency domain deconvolution methods. The algorithm alternates between an E-step based on the fast Fourier transform (FFT) and a DWT-based M-step, resulting in an efficient iterative process requiring O(N log N) operations per iteration. The convergence behavior of the algorithm is investigated, and it is shown that under mild conditions the algorithm converges to a globally optimal restoration. Moreover, our new approach performs competitively with, in some cases better than, the best existing methods in benchmark tests.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据