4.7 Article

Functional genomics of phosphate antiport systems of plastids

期刊

PHYSIOLOGIA PLANTARUM
卷 118, 期 4, 页码 475-482

出版社

WILEY
DOI: 10.1034/j.1399-3054.2003.00137.x

关键词

-

向作者/读者索取更多资源

Plant cells require a co-ordination of metabolism between their major compartments, the plastids and the cytosol, in particular as certain metabolic pathways are confined to either compartments. The inner envelope membrane of the plastids forms the major barrier for metabolite exchange and is the site for numerous transport proteins, which selectively catalyse metabolite exchanges characteristic for green and/or non-green tissues. This report is focused on the molecular biology, evolution and physiological function of the family of phosphate translocators (PT) from plastids. Until now, four distinct subfamilies have been identified and characterized, which all share inorganic phosphate as common substrate, but have different spectra of counter exchange substrates to fulfil the metabolic needs of individual cells and tissues. The PTs are named after their main transported substrate, triose phosphate (TPT), phosphoenolpyruvate (PPT), glucose 6-phosphate (GPT) and xylulose 5-P (XPT). All PTs belong to the TPT/nucleotide sugar transporter (NST) superfamily, which includes yet uncharacterized PT homologues from plants and other eukaryotes. Transgenic plants or mutants with altered transport activity of some of the PTs have been generated or isolated. The analysis of these plant lines revealed new insights in the co-ordination and flexibility of plant metabolism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据