4.7 Article

New thermodynamically consistent competitive adsorption isotherm in RPLC

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 264, 期 1, 页码 43-59

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/S0021-9797(03)00332-1

关键词

adsorption equilibrium; frontal analysis; isotherm modeling; adsorption energy distribution; IAS theory; extended BET isotherm; competitive isotherm; RP-HPLC; toluene; ethylbenzene

向作者/读者索取更多资源

A new equation of competitive isotherms was derived in the framework of the ideal adsorbed solution (IAS) that predicts multisolute adsorption isotherms from single-solute isotherms. The IAS theory makes this new isotherm thermodynamically consistent, whatever the saturation capacities of these single-component isotherms. On a Kromasil-C-18 column, with methanol-water (80/20 v/v) as the mobile phase, the best single-solute adsorption isotherm of both toluene and ethylbenzene is the liquid-solid extended multilayer BET isotherm. Despite a significant difference between the monolayer capacities of toluene (370 g/l) and ethylbenzene (170 g/l), the experimental adsorption data fit very well to single-component isotherms exhibiting the same capacities (200 g/l). The new competitive model was used for the modeling of the elution band profiles of mixtures of the two compounds. Excellent agreement between experimental and calculated profiles was observed, suggesting that the behavior of the toluene-ethylbenzene adsorbed phase on the stationary phase is close to ideal. For example, the concentrations measured for the intermediate plateau obtained in frontal analysis differ by less than 2% from those predicted by the IAS model. (C) 2003 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据