4.4 Article

Xylose metabolism in the anaerobic fungus Piromyces sp strain E2 follows the bacterial pathway

期刊

ARCHIVES OF MICROBIOLOGY
卷 180, 期 2, 页码 134-141

出版社

SPRINGER
DOI: 10.1007/s00203-003-0565-0

关键词

xylose isomerase; D-Xylulokinase; phylogeny; chytrid fungus; Piromyces

向作者/读者索取更多资源

The anaerobic fungus Piromyces sp. strain E2 metabolizes xylose via xylose isomerase and D-xylulokinase as was shown by enzymatic and molecular analyses. This resembles the situation in bacteria. The clones encoding the two enzymes were obtained from a cDNA library. The xylose isomerase gene sequence is the first gene of this type reported for a fungus. Nor-them blot analysis revealed a correlation between mRNA and enzyme activity levels on different growth substrates. Furthermore, the molecular mass calculated from the gene sequence was confirmed by gel permeation chromatography of crude extracts followed by activity measurements. Deduced amino acid sequences of both genes were used for phylogenetic analysis. The xylose isomerases can be divided into two distinct clusters. The Piromyces sp. strain E2 enzyme falls into the cluster comprising plant enzymes and enzymes from bacteria with a low G+C content in their DNA. The D-xylulokinase of Piromyces sp. strain E2 clusters with the bacterial D-Xylulokinases. The xylose isomerase gene was expressed in the yeast Saccharomyces cerevisiae, resulting in a low activity (25 13 nmol min(-1)mg protein(-1)). These two fungal genes may be applicable to metabolic engineering of Saccharomyces cerevisiae for the alcoholic fermentation of hemicellulosic materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据