4.5 Article

Gravitational deposition in a rhythmically expanding and contracting alveolus

期刊

JOURNAL OF APPLIED PHYSIOLOGY
卷 95, 期 2, 页码 657-671

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.00770.2002

关键词

alveolus expansion; lungs; chaos

资金

  1. NHLBI NIH HHS [HL-54885] Funding Source: Medline

向作者/读者索取更多资源

In a previous simulation, our laboratory demonstrated that the flow induced by a rhythmically expanding and contracting alveolus is highly complex (Haber S, Butler JP, Brenner H, Emanuel I, and Tsuda A, J Fluid Mech 405: 243 - 268, 2000). Based on these earlier findings, we hypothesize that the trajectories and deposition of aerosols inside the alveoli differ substantially from those previously predicted. To test this hypothesis, trajectories of fine particles (0.5 - 2.5 mum in diameter) moving in the foregoing alveolar flow field and simultaneously subjected to the gravity field were simulated. The results show that alveolar wall motion is crucial in determining the enhancement of aerosol deposition inside the alveoli. In particular, 0.5- to 1-mum-diameter particles are sensitive to the detailed alveolar flow structure (e.g., recirculating flow), as they undergo gravity-induced convective mixing and deposition. Accordingly, deposition concentrations within each alveolus are nonuniform, with preferentially higher densities near the alveolar entrance ring, consistent with physiological observations. Deposition patterns along the acinar tree are also nonuniform, with higher deposition in the first half of the acinar generations. This is a result of the combined effects of enhanced alveolar deposition in the proximal region of the acinus due to alveoli expansion and contraction and reduction in the number of particles remaining in the gas phase down the acinar tree. We conclude that the cyclically expanding and contracting motion of alveoli plays an important role in determining gravitational deposition in the pulmonary acinus.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据