4.7 Article Proceedings Paper

Photochemical modification of membrane surfaces for (bio)fouling reduction: a nano-scale study using AFM

期刊

DESALINATION
卷 158, 期 1-3, 页码 65-72

出版社

ELSEVIER
DOI: 10.1016/S0011-9164(03)00434-X

关键词

atomic force microscopy; biofouling; colloid probe; membranes; Escherichia coli

向作者/读者索取更多资源

Biofouling, due to microbial growth on membranes, is a common problem during the operation of water treatment membrane plants. It leads to an increase in operation and maintenance costs due to the deterioration of membrane performance and ultimately shortening membrane life. In an attempt to develop membranes with lower fouling properties in this paper we used the photoinduced grafting technique for the modification of membrane surfaces. Two different hydrophilic monomers: 2-acrylamido-2-methyl-l-propanesulfonic acid (AMPS) and quaternary) 2-dimethylaminoethylmethacrylate (qDMAEMA) were photografted to the surface of commercial polyethersulfone (PES) microfiltration membranes (Millipore). The modified membranes were characterised using atomic force microscopy (AFM) by visualisation and the measurement of pore size, pore size distribution and surface roughness. A direct quantification of the force of adhesion using silica colloid probe technique and comparisons with unmodified samples were also made. The membrane affinity to biofouling was tested in the presence of Escherichia coli bacteria. It was found that the number of bacterial cells able to proliferate from countable colonies was much less for qDMAEMA-grafted samples compared with unmodified PES membranes. Thus these modified membranes could be potentially more resistant to biofouling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据