4.7 Article

Multifunctional structural reinforcement featuring carbon nanotube films

期刊

COMPOSITES SCIENCE AND TECHNOLOGY
卷 63, 期 11, 页码 1525-1531

出版社

ELSEVIER SCI LTD
DOI: 10.1016/S0266-3538(03)00065-4

关键词

nanostructures; microstructure; vibration; scanning electron microscopy; chemical vapour deposition

向作者/读者索取更多资源

Multiwalled carbon nanotube thin films were fabricated using catalytic chemical vapor deposition of xylene-ferrocene mixture precursor. The nanotube films were employed as inter-layers within composite systems to reinforce the interfaces between composite plies, enhancing laminate stiffness as well as structural damping. Experiments conducted using a piezo-silica composite beam with an embedded nano-film sub-layer indicated up to 200% increase in the inherent damping level and 30% increase in the baseline bending stiffness with minimal increase in structural weight. Scanning Electron Microscopy (SEM) characterization of the nano-film was also conducted to investigate the mechanics of stiffness and damping augmentation. The study revealed a fascinating network of densely packed, highly interlinked multiwalled nanotubes (MWNTs). This inter-tube connectivity resulted in strong interactions between adjacent nanotube clusters as they shear relative to each other causing energy dissipation within the nano-film. The cross-links between nanotubes also served to improve load transfer within the network resulting in improved stiffness properties. (C) 2003 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据