4.7 Article

Volatile communication between barley plants affects biomass allocation

期刊

JOURNAL OF EXPERIMENTAL BOTANY
卷 54, 期 389, 页码 1931-1939

出版社

OXFORD UNIV PRESS
DOI: 10.1093/jxb/erg192

关键词

aerial allelopathy; mass fractions; relative growth rate; specific leaf area; unit leaf ratio

向作者/读者索取更多资源

Patterns of biomass allocation between different plant organs have often been used to explain the response of plants to variations in resource availability. This paper reports how aerial allelopathy (plant-plant communication) affects biomass allocation, that is the trade-off between root, stem and leaves, and also relative growth rate (RGR, increase in biomass per unit biomass per unit of time, mg g(-1) d(-1)) and its components. Based on previous experiments, communication between two barley (Hordeum vulgare L.) cultivars (Alva and Kara) was used for the present study. Kara exposed to volatiles from Alva allocated significantly more biomass to roots compared with Kara exposed to volatiles from Kara or to clean air. There was no significant difference between plants of Kara exposed to volatiles from Kara and those exposed to clean air. Changes in total dry weight (TDW), RGR and unit leaf rate (ULR, increase in biomass per unit time and leaf area, kg m(-2) d(-1)) were not significantly affected by plant-plant communication. However, there was a significant increase in specific leaf area (SLA, leaf area per leaf dry weight, m(2) kg(-1)) in Kara when exposed to volatiles from Alva. The results show that aerial plant-plant communication does not affect total biomass production but does significantly affect biomass allocation in individual plants. There may be differences in the volatile profiles of Kara and Alva that induce increased biomass allocation to roots in the Kara plants exposed to volatiles from Alva.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据