4.3 Article

Human V5 demonstrated by magnetoencephalography using random dot kinematograms of different coherence levels

期刊

NEUROSCIENCE RESEARCH
卷 46, 期 4, 页码 423-433

出版社

ELSEVIER SCI IRELAND LTD
DOI: 10.1016/S0168-0102(03)00119-6

关键词

motion perception; random dot kinematograms (RDKs); coherence level; magnetoencephalography (MEG); root mean square (RMS); human v5

向作者/读者索取更多资源

To investigate the cortical mechanisms for motion perception in human V5, we measured visual evoked magnetic fields in response to random dot kinematograms (RDKs) of three different coherence levels (50, 70 and 100%) using a 122-channel whole-head magnetometer. As the coherence level increased, the peak amplitude measured by the root mean square (RMS) of the local response increased significantly (7.4+/-1.0, 9.5+/-1.5 and 15.5+/-3.2 fT/cm on the right, 6.4+/-0.3, 7.8+/-0.7 and 12.5+/-0.9 fT/cm on the left; for the coherence level of 50, 70 and 100%, respectively). There was no significant difference between the hemispheres. As for the peak latency, there was no significant difference in terms of coherence levels or hemispheres. The response was localized posterior to the junction of the ascending limb of the inferior temporal and lateral occipital sulci (human V5). These findings indicate that processing of global motion in terms of the synchronized portion correlates well with the response amplitude but not with its latency. Thus, we could estimate the magnetic responses of human V5 non-invasively by presenting different coherence levels of the visual motion stimuli. Hemispheric laterality was recognized, although the dominant side varied among subjects. (C) 2003 Elsevier Science Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据