4.3 Article

EVA/Clay nanocomposite by solution blending: Effect of aluminosilicate layers on mechanical and thermal properties

期刊

MACROMOLECULAR RESEARCH
卷 11, 期 4, 页码 260-266

出版社

POLYMER SOC KOREA
DOI: 10.1007/BF03218362

关键词

nanocomposite; TEM; SEM; clay minerals; delamination

向作者/读者索取更多资源

Ethylene vinyl acetate (EVA)/clay nanocomposites were synthesized by blending a solution of ethylene vinyl acetate copolymer containing 12% vinyl acetate abbreviated as EVA-12 in toluene and dispersion of dodecyl ammonium ion intercalated montmorillonite (12Me-MMT) in N,N-dimethyl acetamide (DMAc). X-ray patterns of sodium montmorillonite (Na+-MMT) and 12Me-MMT exhibited d(001), peak at 2theta=.7.4degrees and 2theta = 5.6degrees respectively; that is, the interlayer spacing of MMT increased by about 0.39 nm due to intercalation of dodecyl ammonium ions. The XRD trace of EVA showed no peak in the angular range of 3-10degrees(2theta). In the XRD patterns of EVA/clay hybrids with clay content up to 6 wt% the basal reflection peak of 12Me-MMT was absent, leading to the formation of delaminated configuration of the composites. When the 12Me-MMT content was 8 wt% in the EVA-12 matrix, the hybrid revealed a peak at about 2theta = 5.6, owing to the aggregation of aluminosilicate layers. Transmission electron microscopic photograph exhibited that an average size of 12-15 nm clay layers were randomly and homogeneously dispersed in the polymer matrix, which led to the formation of nanocomposite with delaminated configuration. The formation of delaminated nanocomposites was manifested through the enhancement of mechanical properties and thermal stability, e.g. tensile strength of an hybrid containing only 2 wt% 12Me-MMT was enhanced by about 36% as compared with neat EVA-12.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据