4.2 Article

Molecular mechanisms of Fe2+-induced β-lactoglobulin cold gelation

期刊

BIOPOLYMERS
卷 69, 期 4, 页码 461-469

出版社

JOHN WILEY & SONS INC
DOI: 10.1002/bip.10423

关键词

beta-lactoglobulin; cold gelation; Fourier transform-infrared spectroscopy; rheology

向作者/读者索取更多资源

To get more insight into the mechanisms of cold gelation of beta-lactoglobulin (beta-lg), macroscopic and molecular structural changes during Fe2+-induced gelation of beta-lg were investigated using Fourier transform-infrared (FTIR) spectroscopy and rheological methods. The FTIR spectroscopy results show that, upon the preheating treatment (first step of gel process), native globular proteins are denatured and aggregated molecules are found in solution. The spectra are similar to those of gels obtained in the second step of the process upon incorporation of Fe, which suggests that aggregated molecules formed during the preheating treatment constitute the structural basis of the aggregation. However, the rheological data show that the aggregation is achieved via two molecular mechanisms, both of which arc modulated by the iron concentration. At 30 mM of iron, gel formation is essentially controlled by van der Waals interactions, while at 10 mM of iron, hydrophobic interactions predominate. At the two concentrations, disulfide bonds contribute to gel consolidation, the effect being more pronounced at 10 mM of iron. These mechanisms lead to the formation of gels of different microstructures. At the highest iron concentration, a strong and rapid decrease in the repulsion forces is produced, resulting in random aggregation. At the lowest iron concentration, the iron diminishes the superficial charge of both molecules and aggregated molecules, facilitating the interaction among hydrophobic regions and leading to the growth of the aggregation in the preferential direction and to filamentous gel formation. This study provides a comprehensive view of the different modes of gelation. (C) 2003 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据