4.7 Article

Society and civilization: An optimization algorithm based on the simulation of social behavior

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TEVC.2003.814902

关键词

constrained optimization; Pareto; social behavior

向作者/读者索取更多资源

The ability of an individual to mutually interact is a fundamental social behavior that is prevalent in all human and insect societies. Social interactions enable individuals to adapt and improve faster than biological evolution based. on genetic inheritance alone. This is the driving concept behind the optimization algorithm introduced in this paper that makes use of the intra and intersociety interactions within a formal society and the civilization model to solve single objective constrained optimization problems. A society corresponds to a cluster of points in the parametric space while a civilization is a set of all such societies at any given point of time. Every society has its set of better performing individuals (henceforth, referred as leaders) that help others in the society to improve through an intrasociety information exchange. The intrasociety information exchange results in the migration of a point toward a better performing point in the cluster that is analogous to an intensified local search around a better performing point. Leaders of a society on the other hand improve only through an intersociety information exchange that results in the migration of a leader from a society to another that is headed by better performing leaders. This process of leader migration helps the better performing societies to expand and flourish that correspond to a search around globally promising regions in the parametric space. In order to study the performance of the proposed algorithm, four well-studied, single objective constrained engineering design optimization problems have been solved. The results indicate that the algorithm is capable of arriving at comparable solutions using significantly fewer function evaluations and stands out as a promising alternative to existing optimization methods for engineering design. Futhermore, the algorithm employs a novel nondominance scheme to handle constraints. that eliminates the problem of scaling and aggregation that is common among penalty-function-based methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据