4.3 Article

X-ray-induced oxidative stress:: DNA damage and gene expression of HO-1, ERCC1 and OGG1 in mouse lung

期刊

FREE RADICAL RESEARCH
卷 37, 期 9, 页码 957-966

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/1071576031000150788

关键词

ionizing radiation; X-ray; DNA repair; gene expression; DNA damage; oxidative stress

向作者/读者索取更多资源

Effects of X-ray induced oxidative stress in mouse lungs were studied in terms of DNA damage and expression of antioxidant defense and DNA repair genes. Lung samples were collected immediately after, and 3, 6, and 22 h after irradiation with 1, 3, 10 or 30 Gy X-rays of the thorax. The levels of strand breaks (SB), formamidopyrimidine DNA glycosylase (FPG) and endonuclease III (ENDOIII) sensitive sites, detected by the comet assay, were increased dose-dependently immediately after irradiation, whereas 8-oxo-7,8-dihydro-2'-deoxyguanosine analyzed by HPLC-EC was unaltered, possibly due to a relatively high background level (2.5/10 6 dG in control tissue). Complete repair of SB was observed 3 h after irradiation, whereas the period required for repair of ENDOIII and FPG sensitive sites was longer. Determined by RT-PCR, the mRNA expression of heme oxygenase-1 (HO-1) was increased 40-fold 6 h after irradiation, whereas the expression of 8-oxoguanine glycosylase (OGG1) and ERCC1 were increased 2.5-fold 6 h after exposure, with saturation at the lowest dose. In conclusion, this study shows the feasibility of partial-body X-ray irradiation as an in vivo model for induction and repair of oxidative DNA damage, and expression of relevant DNA repair and antioxidant defense genes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据