4.7 Article Proceedings Paper

Numerical computation of chemisorption isotherms for device modeling of semiconductor gas sensors

期刊

SENSORS AND ACTUATORS B-CHEMICAL
卷 93, 期 1-3, 页码 362-369

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/S0925-4005(03)00212-0

关键词

semiconductor gas sensors; device modeling; chemisorption; adsorption isotherm

向作者/读者索取更多资源

A computational method for numerical calculations of adsorption isotherms for both non-dissociative and dissociative chemisorption of gases on semiconductors is presented. The method enables calculating the equilibrium coverage of chemisorbed species and the chemisorption-induced potential barrier as a function of the ambient gas pressure, temperature, doping level, and the characteristic properties of the semiconductor/gas interaction. The computational method is applied for simulating the depletive chemisorption of oxygen on n-type SnO2. For both non-dissociative and dissociative chemisorption it is found that the chemisorption-induced potential barrier is proportional to the logarithm of the ambient oxygen pressure. This logarithmic relationship is important for device modeling of SnO2-based oxygen sensors since the sensor response, i.e. the change in the electrical conductivity, is related to the chemisorption-induced surface or intergranular potential barrier. The origin of this logarithmic relationship is attributed to the equilibration of the electrochemical potentials of chemisorbed oxygen adions and free oxygen molecules in the ambient gas phase. (C) 2003 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据