4.4 Article

Differential effects of ethanol on GABAA and glycine receptor-mediated synaptic currents in brain stem motoneurons

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 90, 期 2, 页码 870-875

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00119.2003

关键词

-

资金

  1. NHLBI NIH HHS [HL-49657] Funding Source: Medline
  2. NIGMS NIH HHS [GM-07270] Funding Source: Medline
  3. NINDS NIH HHS [NS-14857] Funding Source: Medline

向作者/读者索取更多资源

Ethanol potentiates glycinergic synaptic transmission to hypoglossal motoneurons (HMs). This effect on glycinergic transmission changes with postnatal development in that juvenile HMs (P9-13) are more sensitive to ethanol than neonate HMs (P1-3). We have now extended our previous study to investigate ethanol modulation of synaptic GABA(A) receptors (GABA(A) Rs), because both GABA and glycine mediate inhibitory synaptic transmission to brain stem motoneurons. We tested the effects of ethanol on GABAergic and glycinergic miniature inhibitory postsynaptic currents (mIPSCs) recorded from neonate and juvenile rat HMs in an in vitro slice preparation. Bath application of 30 mM ethanol had no significant effect on the GABAergic mIPSC amplitude or frequency recorded at either age. At 100 mM, ethanol significantly decreased the GABAergic mIPSC amplitude recorded from neonate (6 +/- 3%, P < 0.05) and juvenile (16 +/- 3%, P < 0.01) HMs. The same concentration of ethanol increased the GABAergic mIPSC frequency recorded from neonate (64 +/- 17%, P < 0.05) and juvenile (40 +/- 15%, n.s.) HMs. In contrast, 100 mM ethanol robustly potentiated glycinergic mIPSC amplitude in neonate (31 +/- 3%, P < 0.0001) and juvenile (41 +/- 7%, P < 0.001) HMs. These results suggest that glycine receptors are more sensitive to modulation by ethanol than GABA A receptors and that 100 mM ethanol has the opposite effect on GABA(A) R-mediated currents in juvenile HMs, that is, inhibition rather than enhancement. Further, comparing ethanol's effects on GABAergic mIPSC amplitude and frequency, ethanol modulates GABAergic synaptic transmission to HMs differentially. Presynaptically, ethanol enhances mIPSC frequency while postsynaptically it decreases mIPSC amplitude.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据