4.5 Article

Field measurements of wind speed and reconfiguration in Arundo donax (Poaceae) with estimates of drag forces

期刊

AMERICAN JOURNAL OF BOTANY
卷 90, 期 8, 页码 1253-1256

出版社

BOTANICAL SOC AMER INC
DOI: 10.3732/ajb.90.8.1253

关键词

Arundo donax; biomechanics; drag force; France; Poaceae; profiles of vertical wind speeds; projected surface area

向作者/读者索取更多资源

The giant reed (Arundo donax) is well known as a species that can withstand high wind loads without mechanical damage. To examine wind impact, profiles of vertical wind speeds in the plant's natural habitat (southern France) were measured at the edge and within a stand in the main wind direction. Wind speed was recorded simultaneously at five heights. For 75 measurements of within-canopy wind speed profiles, the attenuation coefficient was 4.4+/-0.5, a value typical for plant stands with very dense canopies. Video recordings proved that A. donax becomes streamlined with increasing wind speed, reducing the projected surface area of leaves and stem. The total projected surface area is a function of wind speed and can be characterized by a second-order polynomial regression curve. For small wind velocities up to 1 m/s, the calculated drag force is proportional to the square of the wind speed. However, when A. donax plants are subjected to higher wind speeds (1.5-10 m/s), the drag force becomes directly proportional to the wind speed. Streamlining is a potentially important adaptation for withstanding high wind loads, especially for individual plants and plants at the edge of stands, whereas in dense stands streamlining probably plays a minor role.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据