4.5 Article

Nicotinic acetylcholine receptor-mediated neuroprotection by donepezil against glutamate neurotoxicity in rat cortical neurons

期刊

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/jpet.103.050104

关键词

-

向作者/读者索取更多资源

Donepezil is a potent and selective acetylcholinesterase (AChE) inhibitor developed for the treatment of Alzheimer's disease. To elucidate whether donepezil shows neuroprotective action in addition to amelioration of cognitive deficits, we examined the effects of donepezil on glutamate-induced neurotoxicity using primary cultures of rat cortical neurons. A 10-min exposure of cultures to glutamate followed by a 1-h incubation with glutamate-free medium caused a marked loss of viability, as determined by Trypan blue exclusion. Glutamate neurotoxicity was prevented by 24-h pretreatment of donepezil in a concentration-dependent manner. Among AChE inhibitors examined, donepezil and certain AChE inhibitors such as tacrine and galanthamine showed potent neuroprotective action, although physostigmine did not affect glutamate neurotoxicity. Neuroprotective action of donepezil was antagonized by mecamylamine, a nicotinic acetylcholine receptor (nAChR) antagonist, but not by scopolamine, a muscarinic acetylcholine receptor antagonist. Furthermore, both dihydro-beta-erythroidine, an alpha4beta2-neuronal nAChR antagonist, and methyllycaconitine, an alpha7-nAChR antagonist, each also significantly antagonized the effect of donepezil. Next, we examined the effects of donepezil on glutamate-induced apoptosis. Exposure of 100 muM glutamate to cortical neurons for 24 h induced apoptotic neuronal death and nuclear fragmentation. Donepezil for 24 h before and 24 h during glutamate exposure prevented nuclear fragmentation and glutamate-induced apoptosis. These results suggest that donepezil not only protects cortical neurons against glutamate neurotoxicity via alpha4beta2- and alpha7-nAChRs but also prevents apoptotic neuronal death.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据