3.8 Article

Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans

期刊

JOURNAL OF NEUROBIOLOGY
卷 56, 期 2, 页码 178-197

出版社

JOHN WILEY & SONS INC
DOI: 10.1002/neu.10245

关键词

interneuron; sensory neuron; locomotory behavior; C. elegans; mapping; circuit

向作者/读者索取更多资源

One approach to understanding behavior is to define the cellular components of neuronal circuits that control behavior. In the nematode Caenorhabditis elegans, neuronal circuits have been delineated based on patterns of synaptic connectivity derived from ultrastructural analysis. Individual cellular components of these anatomically defined circuits have previously been characterized on the sensory and motor neuron levels. In contrast, interneuron function has only been addressed to a limited extent. We describe here several classes of interneurons (AIY, AIZ, and RIB) that modulate locomotory behavior in C. elegans. Using mutant analysis as well as microsurgical mapping techniques, we found that the AIY neuron class serves to tonically modulate reversal frequency of animals in various sensory environments via the repression of the activity of a bistable switch composed of defined command interneurons. Furthermore, we show that the presentation of defined sensory modalities induces specific alterations in reversal behavior and that the AIY interneuron class mediates this alteration in locomotory behavior. We also found that the AIZ and RIB interneuron classes process odorsensory information in parallel to the AIY interneuron class. AIY, AIZ, and RIB are the first interneurons directly implicated in chemosensory signaling. Our neuronal mapping studies provide the framework for further genetic and functional dissections of neuronal circuits in C. elegans. (C) 2003 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据