4.6 Article

An HSV-TK transgenic mouse model to evaluate elimination of fibroblasts for fibrosis therapy

期刊

AMERICAN JOURNAL OF PATHOLOGY
卷 163, 期 2, 页码 789-801

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/S0002-9440(10)63706-6

关键词

-

资金

  1. NHLBI NIH HHS [R01 HL67794, R01 HL067794, P50HL50152] Funding Source: Medline

向作者/读者索取更多资源

Pathological fibroproliferation after tissue injury is harmful and may lead to organ dysfunction. Unfortunately, fibroproliferative diseases remain intractable to current therapeutic strategies. Thus, new therapeutic approaches are needed. One possible approach is to promote resolution of physiological fibroproliferation that follows injury before it becomes pathological by activating apoptosis selectively in fibrotic lesions. However, it is not known whether selective elimination of fibroblasts will prevent fibrosis or impede repair or worsen injury by eliminating topographic signals essential to organ reconstitution. To address this question, a tractable in vivo model system is needed in which fibroblasts can be targeted to undergo apoptosis at a chosen time and place. We developed transgenic mice expressing HSV-TK from the type 1 collagen promoter to determine whether selective elimination of fibroblasts actively forming fibrotic lesions is an effective therapeutic strategy for fibroproliferative disorders. The transgene renders fibroblasts actively forming fibrotic tissue susceptible to ganciclovir. To validate the transgenic model we examined whether administration of ganciclovir prevents the development of fibrosis in sponges implanted subcutaneously in the backs of the transgenic mice. We demonstrate that fibroblasts/myofibroblasts isolated from sponges express HSV-TK protein and are selectively ablated by ganciclovir in vitro. In adult transgenic mice, ganciclovir treatment attenuated the development of fibrotic tissue in the sponges both biochemically and histologically. We conclude that this transgenic model system is an ideal approach to determine whether targeted ablation of fibroblasts is an effective therapeutic strategy for fibrotic diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据