4.6 Article

Asymptotic von Neumann measurement strategy for solid-state qubits

期刊

PHYSICAL REVIEW B
卷 68, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.68.060503

关键词

-

向作者/读者索取更多资源

A measurement on a macroscopic quantum system does not, in general, lead to a projection of the wave function in the basis of the detector as predicted by von Neumann's postulate. Hence, it is a question of fundamental interest, how the preferred basis onto which the state is projected is selected out of the macroscopic Hilbert space of the system. Detector-dominated von Neumann measurements are also desirable for both quantum computation and verification of quantum mechanics on a macroscopic scale. The connection of these questions to the predictions of the spin-boson model is outlined. I propose a measurement strategy, which uses the entanglement of the qubit with a weakly damped harmonic oscillator. It is shown that the degree of entanglement controls the degree of renormalization of the qubit and identify that this is equivalent to the degree to which the measurement is detector dominated. This measurement very rapidly decoheres the initial state, but the thermalization is slow. The implementation in Josephson quantum bits is described and it is shown that this strategy also has practical advantages for the experimental realization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据