4.7 Article

Large full band gaps for photonic crystals in two dimensions computed by an inverse method with multigrid acceleration

期刊

PHYSICAL REVIEW E
卷 68, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.68.026704

关键词

-

向作者/读者索取更多资源

In this study, two fast and accurate methods of inverse iteration with multigrid acceleration are developed to compute band structures of photonic crystals of general shape. In particular, we report two-dimensional photonic crystals of silicon air with an optimal full band gap of gap-midgap ratio Deltaomega/omega(mid)=0.2421, which is 30% larger than ever reported in the literature. The crystals consist of a hexagonal array of circular columns, each connected to its nearest neighbors by slender rectangular rods. A systematic study with respect to the geometric parameters of the photonic crystals was made possible with the present method in drawing a three-dimensional band-gap diagram with reasonable computing time.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据