4.8 Article

Effects of surface coordination chemistry on the magnetic properties of MnFe2O4 spinel ferrite nanoparticles

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 125, 期 32, 页码 9828-9833

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja035474n

关键词

-

向作者/读者索取更多资源

To understand the influence of surface interactions upon the magnetic properties of magnetic nanoparticles, the surface of manganese ferrite, MnFe2O4, nanoparticles have been systematically modified with a series of para-substituted benzoic acid ligands (HOOC-C6H4-R; R = H, CH3, Cl, NO2, OH) and substituted benzene ligands (Y-C6H5, Y = COOH, SH, NH2, OH, SO3H). The coercivity of magnetic nanoparticles decreases up to almost 50% upon the coordination of the ligands on the nanoparticle surface, whereas the saturation magnetization has increased. The percentage coercivity decrease of the modified nanoparticles with respect to the native nanoparticles strongly correlates with the crystal field splitting energy (CFSE) A evoked by the coordination ligands. The ligand inducing largest CFSE results in the strongest effect on the coercivity of magnetic nanoparticles. The change in magnetic properties of nanoparticles also correlates with the specific coordinating functional group bound onto the nanoparticle surface. The correlations suggest the decrease in spin-orbital couplings and surface anisotropy of magnetic nanoparticles due to the surface coordination. Such surface effects clearly show the dependence on the size of nanoparticles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据