4.6 Article

Hydrosilylation of crystalline silicon (111) and hydrogenated amorphous silicon surfaces: A comparative x-ray photoelectron spectroscopy study

期刊

JOURNAL OF APPLIED PHYSICS
卷 94, 期 4, 页码 2289-2294

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1593223

关键词

-

向作者/读者索取更多资源

Alkene molecules were covalently bonded to hydrogen-terminated crystalline silicon (111) and hydrogenated amorphous silicon (a-Si:H) surfaces by thermally induced hydrosilylation. The resulting chemical surface structure was analyzed by x-ray photoelectron spectroscopy and compared to that of the corresponding silicon surfaces covered by a native oxide and terminated with hydrogen. Our results demonstrate successful hydrosilylation on both substrate materials. However, the presence of oxygen on the surface turns out to hinder the hydrosilylation reaction, as shown by the reduced concentration of hydrocarbons on the surface after prolonged exposure of the Si substrates prior to hydrosilylation. By monitoring both the O 1s and the Si 2p peaks, the oxidation kinetics of a-Si:H was found to be diffusion limited. Since stable hydrogen termination as a prerequisite of hydrosilylation can be achieved on a-Si:H surfaces with much less technological effort than on crystalline silicon surfaces, a-Si:H is a promising substrate for biofunctionalization procedures requiring less stringent process conditions. (C) 2003 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据