4.7 Review

Transcriptional and post-transcriptional control of cold-shock genes

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 331, 期 3, 页码 527-539

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/S0022-2836(03)00732-0

关键词

stress response; bacterial gene expression; translational apparatus; translation initiation factors; mRNA stability

向作者/读者索取更多资源

A mesophile like Escherichia coli responds to abrupt temperature downshifts (e.g. from 37degreesC to 10degreesC) with an adaptive response that allows cell survival and eventually resumption of growth under the new unfavorable environmental conditions. During this response, bulk transcription and translation slow or come to an almost complete stop, while a set of about 26 cold-shock genes is preferentially and transiently expressed. At least some of the proteins encoded by these genes are essential for survival in the cold, but none plays an exclusive role in cold adaptation, not even the major cold-shock protein CspA and none is induced de novo. The majority of these proteins binds nucleic acids and are involved in fundamental functions (DNA packaging, transcription, RNA degradation, translation, ribosome assembly, etc.). Although cold-induced activation of specific promoters has been implicated in upregulating some cold-shock genes, post-transcriptional mechanisms play a major role in cold adaptation; cold stress-induced changes of the RNA degradosome determine a drastic stabilization of the cold-shock transcripts and cold shock-induced modifications of the translational apparatus determine their preferential translation in the cold. This preferential translation at low temperature is due to cis elements present in the 5' untranslated region of at least some cold-shock mRNAs and to trans-acting factors whose levels are increased substantially by cold stress. Protein CspA and the three translation initiation factors (IF3 in particular), whose stoichiometry relative to the ribosomes is more than doubled during the acclimation period, are among the trans elements found to selectively stimulate cold-shock mRNA translation in the cold. (C) 2003 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据