4.6 Article

Spin dephasing in quantum wires

期刊

PHYSICAL REVIEW B
卷 68, 期 7, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.68.075313

关键词

-

向作者/读者索取更多资源

We study high-field spin transport in a quantum wire using a semiclassical approach. Spin dephasing (or spin depolarization) in the wire is caused by D'yakonov-Perel' relaxation associated with bulk inversion asymmetry (Dresselhaus spin-orbit coupling) and structural inversion asymmetry (Rashba spin-orbit coupling). The depolarization rate is found to depend strongly on the initial polarization of the spin. If the initial polarization is along the axis of the wire, the spin depolarizes similar to100 times slower compared to the case when the initial polarization is transverse to the wire axis. We also find that in the range 4.2-50 K, temperature has a weak influence and the driving electric field has a strong influence on the depolarization rate. The steady state distribution of the spin components parallel and transverse to the wire axis also depend on the initial polarization. If the initial polarization is along the wire axis, then the steady state distribution of both components is a flat-topped uniform distribution, whereas if the initial polarization is transverse to the wire axis, then the distribution of the longitudinal component resembles a Gaussian, and the distribution of the transverse component is U shaped.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据