4.5 Article

Methanol oxidation on stepped Pt[n(111) x (110)] electrodes:: A chronoamperometric study

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 107, 期 33, 页码 8557-8567

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp034291k

关键词

-

向作者/读者索取更多资源

The methanol oxidation reaction has been studied on Pt[n(111) x (110)]-type electrodes in a 0.5 M sulfuric acid and 0.025 M methanol solution, using cyclic voltammetry and chronoamperometry. The voltammetric behavior of methanol on the three electrodes under investigation [Pt(I 11), Pt(554), and Pt(553)] shows that the overall oxidation rate increases with an increasing step density and that the defects are affected more by the presence of methanol than terraces. The latter implies that either the decomposition products of methanol or the methanol itself preferably sit at the steps. Investigation of the chronoamperometric data showed that the steady-state current, recorded at 900 s after the start of the experiment, increases with an increasing step density. Moreover, surfaces with a higher step density display a faster dropping current, which suggests that the decomposition of methanol into CO poisoning species also preferentially takes place on the steps and defects. Unlike the stepped electrodes, most transients recorded on Pt(111) showed an initial current increase, which may be explained by the CO oxidation being faster than the methanol decomposition. This low decomposition rate is probably the result of a sufficiently low defect density and the low methanol concentration used in our experiments. Fitting the chronoamperometric data with a mathematical model, which includes the methanol decomposition reaction, the CO oxidation reaction, and the direct methanol oxidation reaction, suggests that steps and defects catalyze all these reactions. Furthermore, the model indeed predicts that when the CO, oxidation rate is faster than the decomposition rate, a rising current transient can be expected, as was seen for Pt(111).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据