4.5 Article

Quantum transport effects in nanosized graphite sheets. II. Enhanced transport effects by heteroatoms

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 107, 期 34, 页码 8789-8793

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp021739t

关键词

-

向作者/读者索取更多资源

Quantum transport effects in various nanosized graphite sheets are studied on the basis of the Landauer model. To derive heteroatomic effects in quantum transport, nanosized graphite sheets that involve B, N, and O atoms are treated. Important rules for effective quantum transport are found: (I) two atoms connected with metallic leads should have large molecular orbital (MO) coefficients in the frontier orbitals (i.e., the highest occupied MO (HOMO) and the lowest unoccupied MO (LUMO) or other MOs in the vicinity of the Fermi energy); (II) the product of MO coefficients at the two atoms should be different in sign between the HOMO and LUMO, and the product of MO coefficients at the two atoms should be same in sign between the HOMO (LUMO) and other occupied (unoccupied) orbitals near the Fermi energy. Heteroatoms are useful to enhance quantum transport effects because heteroatoms in nanosized graphite sheets can decrease the energy gaps and localize the T-electronic populations at certain sites in the HOMO and LUMO.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据