4.8 Article

Stability of the body-centred-cubic phase of iron in the Earth's inner core

期刊

NATURE
卷 424, 期 6952, 页码 1032-1034

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature01954

关键词

-

向作者/读者索取更多资源

Iron is thought to be the main constituent of the Earth's core(1), and considerable efforts(2-14) have therefore been made to understand its properties at high pressure and temperature. While these efforts have expanded our knowledge of the iron phase diagram, there remain some significant inconsistencies, the most notable being the difference between the 'low' and 'high' melting curves(15). Here we report the results of molecular dynamics simulations of iron based on embedded atom models fitted to the results of two implementations of density functional theory. We tested two model approximations and found that both point to the stability of the body-centred-cubic (b.c.c.) iron phase at high temperature and pressure. Our calculated melting curve is in agreement with the 'high' melting curve, but our calculated phase boundary between the hexagonal close packed (h. c. p.) and b.c.c. iron phases is in good agreement with the 'low' melting curve. We suggest that the h.c.p.-b.c.c. transition was previously misinterpreted as a melting transition, similar to the case of xenon(16-18), and that the b.c.c. phase of iron is the stable phase in the Earth's inner core.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据