4.8 Article

Visually driven regulation of intrinsic neuronal excitability improves stimulus detection in vivo

期刊

NEURON
卷 39, 期 5, 页码 831-842

出版社

CELL PRESS
DOI: 10.1016/S0896-6273(03)00527-0

关键词

-

向作者/读者索取更多资源

Neurons adapt their electrophysiological properties to maintain stable levels of electrical excitability when faced with a constantly changing environment. We find that exposing freely swimming Xenopus tadpoles to 4-5 hr of persistent visual stimulation increases the intrinsic excitability of optic tectal neurons. This increase is correlated with enhanced voltage-gated Na+ currents. The same visual stimulation protocol also induces a polyamine synthesis-dependent reduction in Ca2+-permeable AMPAR-mediated synaptic drive, suggesting that the increased excitability may compensate for this reduction. Accordingly, the change in excitability was prevented by blocking polyamine synthesis during visual stimulation and was rescued when Ca2+-permeable AMPAR-mediated transmission was selectively reduced. The changes in excitability also rendered tectal cells more responsive to synaptic burst stimuli, improving visual stimulus detection. The synaptic and intrinsic adaptations function together to keep tectal neurons within a constant operating range, while making the intact visual system less responsive to background activity yet more sensitive to burst stimuli.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据