4.7 Article

Fluorescence sensing systems: In vivo detection of biophysical variations in field corn due to nitrogen supply

期刊

REMOTE SENSING OF ENVIRONMENT
卷 86, 期 4, 页码 470-479

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/S0034-4257(03)00125-1

关键词

fluorescence imaging; carbon; nitrogen; precision agriculture; Zea mays L.

向作者/读者索取更多资源

Leaf and canopy fluorescence properties of field corn (Zea mays L.) grown under varying levels of nitrogen (N) fertilization were characterized to provide an improved N sensing capability which may assist growers in site-specific N management decisions. In vivo fluorescence emissions can occur in the wavelength region from 300 to 800 nm and are dependent on the wavelength of illumination. These light emissions have been grouped into five primary bands with maxima most frequently received from corn at 320 mn (UV), 450 nm (blue), 530 mn (green), 685 nm (red), and 740 nm (far-red). Two active fluorescence sensing systems have been custom developed; a leaf level Fluorescence Imaging System (FIS), and a canopy level Laser Induced Fluorescence Imaging System (LIFIS). FIS sequentially acquires high-resolution images of fluorescence emission bands under darkened laboratory conditions, while LIFIS simultaneously acquires four band images of plant canopies greater than or equal to1 m(2) under ambient sunlit conditions. Fluorescence emissions induced by these systems along with additional biophysical measures of crop condition; namely, chlorophyll content, N/C ratio, leaf area index (LAI), and grain yield, exhibited similar curvilinear responses to levels of supplied N. A number of significant linear correlations were found among band emissions and several band ratios versus measures of crop condition. Significant differences were obtained for several fluorescence band ratios with respect to the level of supplied N. Leaf adaxial versus abaxial surface emissions exhibited opposing trends with respect to the level of supplied N. Evidence supports that this confounding effect could be removed in part by the green/blue and green/red ratio images. The FIS and LIFIS active fluorescence sensor systems yielded results which support the underlying hypothesis that leaf and canopy fluorescence emissions are associated with other biophysical attributes of crop growth and this information could potentially assist in the site-specific management of variable-rate N fertilization programs. (C) 2003 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据