4.7 Article

Pyruvate inhibits zinc-mediated pancreatic islet cell death and diabetes

期刊

DIABETOLOGIA
卷 46, 期 9, 页码 1220-1227

出版社

SPRINGER
DOI: 10.1007/s00125-003-1171-z

关键词

zinc; ATP; pyruvate; apoptosis; necrosis

向作者/读者索取更多资源

Aims/hypothesis. We have shown that zinc ion (Zn2+) in secretory granules of pancreatic beta cells could act as a paracrine death effector in streptozotocin-induced diabetes. As Zn2+ has been reported to perturb glycolysis, we studied if pyruvate could inhibit Zn2+-mediated islet cell death in vitro and streptozotocin-induced diabetes in vivo by normalizing intracellular energy metabolism. Methods. Cell death was measured by quantitative viable cell staining and Hoechst/propidium iodide staining. ATP was measured by bioluminescence determination. Pyruvate was infused through the tail vein 1 h before streptozotocin administration. Beta-cell volume was measured by point counting of the insulin-containing cells. Results. Zn2+ induced classical necrosis on MIN6N8 insulinoma cells which was associated with a rapid decline of intracellular ATP levels. Pyruvate inhibited Zn2+-induced necrosis of insulinoma cells and depletion of intracellular ATP by Zn2+. Pyruvate did not inhibit other types of necrosis or apoptosis. Energy substrates such as oxaloacetate, alpha-ketoglutarate and succinic acid dimethylester also attenuated Zn2+-induced insulinoma cell death. Methylpyruvate that does not generate NAD(+) in the cytoplasm or alpha-ketoisocaproate that stimulates ATP generation exclusively in mitochondria also protected insulinoma cells from Zn2+-induced necrosis. Pyruvate infusion inhibited the development of diabetes by protecting beta-cell mass after streptozotocin administration. Conclusion/interpretation. These results indicate that pyruvate inhibits Zn2+-induced necrosis of beta cells in vitro by protecting intracellular ATP levels and also streptozotocin-induced diabetes in vivo where Zn2+ has been reported to act as a paracrine death effector.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据