4.6 Article

Effects of Baicalein on the Pharmacokinetics of Tamoxifen and its Main Metabolite, 4-Hydroxytamoxifen, in Rats: Possible Role of Cytochrome P450 3A4 and P-glycoprotein inhibition by Baicalein

期刊

ARCHIVES OF PHARMACAL RESEARCH
卷 34, 期 11, 页码 1965-1972

出版社

PHARMACEUTICAL SOC KOREA
DOI: 10.1007/s12272-011-1117-9

关键词

Tamoxifen; 4-Hydroxytamoxifen; Baicalein; Pharmacokinetics; CYP3A4; P-gp; Rats

资金

  1. National Research Foundation of Korea [핵C6A3404] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

The purpose of this study was to investigate the effects of baicalein on the pharmacokinetics of tamoxifen and its active metabolite, 4-hydroxytamoxifen, in rats. Tamoxifen and baicalein interact with cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp), and the increase in the use of health supplements may result in baicalein being taken concomitantly with tamoxifen as a combination therapy to treat orprevent cancer diseases. Pharmacokinetic parameters of tamoxifen and 4-hydroxytamoxifen were determined in rats after an oral administration of tamoxifen (10 mg/kg) to rats in the presence and absence of baicalein (0.5, 3, and 10 mg/kg). Compared to the oral control group (given tamoxifen alone), the area under the plasma concentration-time curve and the peak plasma concentration of tamoxifen were significantly increased by 47.6-89.1% and 54.8-100.0%, respectively. The total body clearance was significantly decreased (3 and 10 mg/kg) by baicalein. Consequently, the absolute bioavailability of tamoxifen in the presence of baicalein (3 and 10 mg/kg) was significantly increased by 47.5-89.1% compared with the oral control group (20.2%). The metabolite-parent AUC ratio of tamoxifen was significantly reduced, implying that the formation of 4-hydroxytamoxifen was considerably affected by baicalein. Baicalein enhanced the oral bioavailability of tamoxifen, which may be mainly attributable to inhibition of the CYP3A4-mediated metabolism of tamoxifen in the small intestine and/or in the liver, and inhibition of the P-gp efflux pump in the small intestine and/or reduction of total body clearance by baicalein.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据