4.5 Article Proceedings Paper

Eat me and don't eat me signals govern the innate immune response and tissue repair in the CNS: emphasis on the critical role of the complement system

期刊

MOLECULAR IMMUNOLOGY
卷 40, 期 2-4, 页码 85-94

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0161-5890(03)00109-3

关键词

complement; innate immunity; apoptosis; phagocytosis; neuroinflammation; brain repair; neurodegeneration

向作者/读者索取更多资源

A full innate immune system (e.g. complement system, scavenger receptors, Toll-like receptors (TLR)) has been described in the CNS and is thought to be an extremely efficient army designed to fight against invading pathogens and toxic cell debris such as apoptotic cells and amyloid fibrils. The binding of soluble or secreted innate immune molecules on pathogen-associated molecular patterns (PAMPs) as well as apoptotic cell-associated molecular patterns (ACAMPs) provide several eat me signals to promote the safe disposal of the intruders by professional and amateur phagocytes. These patterns are deciphered by receptors (pattern recognition receptors, PRRs; e.g. CR3) that control phagocytosis and associated inflammatory response depending on the meaning of these signals. Importantly, in order to avoid excessive collateral damage of surrounding cells, it is increasingly evident that don't eat me signals (coined herein as self-associated molecular patterns, SAMPs; e.g. complement regulatory proteins, CD200) are of paramount importance to signal a robust anti-inflammatory response and promote tissue repair. Further knowledge of the innate immune response in the CNS will greatly help to delineate the novel therapeutic routes to protect from CNS inflammation and neurodegeneration. (C) 2003 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据