4.5 Article

Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage

期刊

JOURNAL OF BIOMECHANICS
卷 36, 期 9, 页码 1373-1379

出版社

ELSEVIER SCI LTD
DOI: 10.1016/S0021-9290(03)00069-1

关键词

cartilage mechanics; finite element analysis; proteoglycans; collagen; enzymatic degradation

向作者/读者索取更多资源

Degradation of collagen network and proteoglycan (PG) macromolecules are signs of articular cartilage degeneration. These changes impair cartilage mechanical function. Effects of collagen degradation and PG depletion on the time-dependent mechanical behavior of cartilage are different. In this study, numerical analyses, which take the compression-tension nonlinearity of the tissue into account, were carried out using a fibril reinforced poroelastic finite element model. The study aimed at improving our understanding of the stress-relaxation behavior of normal and degenerated cartilage in unconfined compression. PG and collagen degradations were simulated by decreasing the Young's modulus of the drained porous (nonfibrillar) matrix and the fibril network, respectively. Numerical analyses were compared to results from experimental tests with chondroitinase ABC (PG depletion) or collagenase (collagen degradation) digested samples. Fibril reinforced poroelastic model predicted the experimental behavior of cartilage after chondroitinase ABC digestion by a major decrease of the drained porous matrix modulus (-64 +/- 28%) and a mirror decrease of the fibril network modulus (-11 +/- 9%). After collagenase digestion, in contrast, the numerical analyses predicted the experimental behavior of cartilage by a major decrease of the fibril network modulus (-69+/-5%) and a decrease,of the drained porous matrix modulus (-44+/-18%). The reduction of the drained porous matrix modulus after collagenase digestion was consistent with the microscopically observed secondary PG loss from the tissue. The present results indicate that the fibril reinforced poroelastic model is able to predict specifically characteristic alterations in the stress-relaxation behavior of cartilage after enzymatic modifications of the tissue. We conclude that the compression-tension nonlinearity of the tissue is needed to capture realistically the mechanical behavior of normal and degenerated articular cartilage. (C) 2003 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据