4.6 Article

Functional analysis of mosquito-borne flavivirus conserved sequence elements within 3′ untranslated region of west Nile virus by use of a reporting replicon that differentiates between viral translation and RNA replication

期刊

JOURNAL OF VIROLOGY
卷 77, 期 18, 页码 10004-10014

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.77.18.10004-10014.2003

关键词

-

类别

资金

  1. NIAID NIH HHS [N01 AI 25490, N01AI25490] Funding Source: Medline

向作者/读者索取更多资源

We have developed a reporting replicon of West Nile virus (WNV) that could be used to quantitatively distinguish viral translation and RNA replication. A Renilla luciferase (Rluc) gene was fused in-frame with the open reading frame of a subgenomic replicon in the position where the viral structural region was deleted, resulting in RlucRep. Transfection of BHK cells with RlucRep RNA yielded two distinctive Rluc signal peaks, one between 2 and 10 h and the other after 26 h posttransfection. By contrast, only the 2- to 10-h Rluc signal peak was observed in cells transfected with a mutant replicon containing an inactivated viral polymerase NS5 (RlucRep-NS5mt). Immunofluorescence and real-time reverse transcriptase PCR assays showed that the levels of viral protein expression and RNA replication increased in cells transfected with the RlucRep but not in those transfected with the RlucRep-NS5mt. These results suggest that the Rluc signal that occurred at 2 to 10 h posttransfection reflects viral translation of the input replicon, while the Rluc activity after 26 h posttransfection represents RNA replication. Using this system, we showed that mutations of conserved sequence (CS) elements within the 3' untranslated region of the mosquito-borne flaviviruses did not significantly affect WNV translation but severely diminished or completely abolished RNA replication. Mutations of CS1 that blocked the potential base pairing with a conserved sequence in the 5' region of the capsid gene (5'CS) abolished RNA replication. Restoration of the 5'CS-CS1 interaction rescued viral replication. Replicons containing individual deletions of CS2, repeated CS2 (RCS2), CS3, or RCS3 were viable, but their RNA replication was dramatically compromised. These results demonstrate that genome cyclization through the 5'CS-CS1 interaction is essential for WNV RNA replication, whereas CS2, RCS2, CS3, and RCS3 facilitate, but are dispensable for, WNV replication.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据