4.6 Article

Oxygen delivery to skeletal muscle fibers: effects of microvascular unit structure and control mechanisms

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00278.2003

关键词

capillaries; conducted response; flow regulation; motor units; oxygen diffusion; theoretical model

资金

  1. NHLBI NIH HHS [HL 70657, HL 34555] Funding Source: Medline

向作者/读者索取更多资源

The number of perfused capillaries in skeletal muscle varies with muscle activation. With increasing activation, muscle fibers are recruited as motor units consisting of widely dispersed fibers, whereas capillaries are recruited as groups called microvascular units (MVUs) that supply several adjacent fibers. In this study, a theoretical model was used to examine the consequences of this spatial mismatch between the functional units of muscle activation and capillary perfusion. Diffusive oxygen transport was simulated in cross sections of skeletal muscle, including several MVUs and fibers from several motor units. Four alternative hypothetical mechanisms controlling capillary perfusion were considered. First, all capillaries adjacent to active fibers are perfused. Second, all MVUs containing capillaries adjacent to active fibers are perfused. Third, each MVU is perfused whenever oxygen levels at its feed arteriole fall below a threshold value. Fourth, each MVU is perfused whenever the average oxygen level at its capillaries falls below a threshold value. For each mechanism, the dependence of the fraction of perfused capillaries on the level of muscle activation was predicted. Comparison of the results led to the following conclusions. Control of perfusion by MVUs increases the fraction of perfused capillaries relative to control by individual capillaries. Control by arteriolar oxygen sensing leads to poor control of tissue oxygenation at high levels of muscle activation. Control of MVU perfusion by capillary oxygen sensing permits adequate tissue oxygenation over the full range of activation without resulting in perfusion of all MVUs containing capillaries adjacent to active fibers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据