4.8 Article

Single-molecule fluorescence trajectories for investigating molecular transport in thin silica sol-gel films

期刊

ANALYTICAL CHEMISTRY
卷 75, 期 17, 页码 4351-4359

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac0345289

关键词

-

向作者/读者索取更多资源

Single-molecule fluorescence tracking has been used to examine diffusion of small molecules in sol-gel films in order to identify spatial heterogeneity in the structure and molecular diffusivities for different regions of the film. Fluorescence intensity profiles from single molecules are fit to a two-dimensional Gaussian function to determine their x,y positions with subpixel resolution. Scatter plots and histograms of molecular step sizes indicate that the trajectories conform to the predictions of a two-dimensional random walk. The mean-square step size is shown to be an unbiased estimate of the variance of the step-size probability distribution and a valid statistic for determining the diffusion coefficient from a molecular trajectory. The diffusion coefficients measured for different molecules are subjected to an F test, which showed that the sol-gel film exhibits spatial variation in the diffusion coefficient on a micrometer-length scale. The spatial variation in diffusivities is a measure of structural heterogeneity of these films.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据