4.5 Article

Members of the large Maf transcription family regulate insulin gene transcription in islet β cells

期刊

MOLECULAR AND CELLULAR BIOLOGY
卷 23, 期 17, 页码 6049-6062

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.23.17.6049-6062.2003

关键词

-

资金

  1. NIDDK NIH HHS [P01 DK042502, P60 DK20593, P60 DK020593, P01 DK42502] Funding Source: Medline
  2. NIGMS NIH HHS [GM43609, R01 GM043609] Funding Source: Medline

向作者/读者索取更多资源

The C1/RIPE3bl (-118/-107 bp) binding factor regulates pancreatic-beta-cell-specific and glucose-regulated transcription of the insulin gene. In the present study, the C1/RIPE3b1 activator from mouse betaTC-3 cell nuclear extracts was purified by DNA affinity chromatography and two-dimensional gel electrophoresis. C1/RIPE3b1 binding activity was found in the roughly 46-kDa fraction at pH 7.0 and pH 4.5, and each contained N- and C-terminal peptides to mouse MafA as determined by peptide mass mapping and tandem spectrometry. MafA was detected in the C1/RIPE3b1 binding complex by using MafA peptide-specific antisera. In addition, MafA was shown to bind within the enhancer region (-340/-91 bp) of the endogenous insulin gene in betaTC-3 cells in the chromatin immunoprecipitation assay. These results strongly suggested that MafA was the beta-cell-enriched component of the RIPE3b1 activator. However, reverse transcription-PCR analysis demonstrated that mouse islets express not only MafA but also other members of the large Maf family, specifically c-Maf and MafB. Furthermore, immunohistochemical studies revealed that at least MafA and MafB were present within the nuclei of islet beta cells and not within pancreas acinar cells. Because MafA, MafB, and c-Maf were each capable of specifically binding to and activating insulin C1 element-mediated expression, our results suggest that all of these factors play a role in islet beta-cell function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据