4.8 Article

The RAS signal transduction pathway and its role in radiation sensitivity

期刊

ONCOGENE
卷 22, 期 37, 页码 5866-5875

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.onc.1206699

关键词

RAS; EGFR; AKT; signal transduction; radiation sensitivity

资金

  1. NCI NIH HHS [P01 CA 75138] Funding Source: Medline

向作者/读者索取更多资源

RAS has been shown to increase radiation resistance. Upstream and downstream pathways from RAS could thus be targets for manipulation of radiosensitivity. EGFR expression and AKT phosphorylation are also associated with the response to radiation. A retrospective study evaluating EGFR and AKT in patients treated with multimodality therapy found a significant association between P-AKT and treatment failure. Moreover, these data are strengthened by in vitro studies showing that inhibition of EGFR, RAS, PI3K, and AKT radiosensitized cancer cell lines. We have previously shown that PI3K is a mediator of RAS-induced radiation resistance. We now suggest that EGFR, which is upstream of PI3K, may also mediate resistance through a common pathway. In addition to EGFR and RAS, PTEN can also regulate the PI3K pathway. Identifying a common signal for EGFR, RAS, or PTEN that results in radiation resistance may uncover targets for developing molecular-based radiosensitization protocols for tumors resistant to radiation and thus improve local control.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据