4.8 Review

Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms

期刊

ONCOGENE
卷 22, 期 37, 页码 5734-5754

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.onc.1206663

关键词

reactive oxygen; reactive nitrogen; nitric oxide radiation; signal transduction; redox

资金

  1. NCI NIH HHS [CA89055, CA65896, CA72955] Funding Source: Medline

向作者/读者索取更多资源

In the past few years, nuclear DNA damage-sensing mechanisms activated by ionizing radiation have been identified, including ATM/ATR and the DNA-dependent protein kinase. Less is known about sensing mechanisms for cytoplasmic ionization events and how these events influence nuclear processes. Several studies have demonstrated the importance of cytoplasmic signaling pathways in cytoprotection and mutagenesis. For cytoplasmic signaling, radiation-stimulated reactive oxygen species (ROS) and reactive nitrogen species (RNS) are essential activators of these pathways. This review summarizes recent studies on the chemistry of radiation-induced ROS/RNS generation and emphasizes interactions between ROS and RNS and the relative roles of cellular ROS/RNS generators as amplifiers of the initial ionization events. Cellular mechanisms for regulating ROS/RNS levels are discussed. The mechanisms by which cells sense ROS/RNS are examined in terms of how ROS/RNS modify protein structure and function, for example, interactions with metal-thiol clusters, protein tyrosine nitration, protein cysteine oxidation, S-thiolation and S-nitrosylation. We propose that radiation-induced ROS are the initiators and that nitric oxide (NO.) or derivatives are the effectors activating these signal transduction pathways. In responding to cellular ionization events, the cell converts an oxidative signal to a nitrosative one because ROS are too reactive and unspecific in their reactions for regulatory purposes and the cell is equipped to precisely modulate NO. levels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据