4.5 Article

Combinatorial characterization of cell interactions with polymer surfaces

期刊

出版社

WILEY-LISS
DOI: 10.1002/jbm.a.10004

关键词

combinatorial; osteoblasts; polymer; tissue engineering; surface interactions

向作者/读者索取更多资源

We report a novel combinatorial methodology for characterizing the effects of polymer surface features on cell function. Libraries containing hundreds to thousands of distinct chemistries, microstructures, and roughnesses are prepared using composition spread and temperature gradient techniques. The method enables orders of magnitude increases in discovery rate, decreases variance, and allows for the first time high-throughput assays of cell response to physical and chemical surface features. The technique overcomes complex variable spaces that limit development of biomaterial surfaces for control of cell function. This report demonstrates these advantages by investigating the sensitivity of osteoblasts to the chemistry, microstructure, and roughness of poly(D,L-lactide) and poly(epsilon-caprolactone tone) blends. In particular, we use the phenomenon of heat-induced phase separation in these polymer mixtures to generate libraries with diverse surface features, followed by culture of UMR-106 and MC3T3-E1 osteoblasts on the libraries. Surface features produced at a specific composition and process temperature range were discovered to enhance dramatically alkaline phosphatase expression in both cell lines, not previously observed for osteoblasts on polymer blends.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据