4.5 Article Proceedings Paper

Soil structure and pedotransfer functions

期刊

EUROPEAN JOURNAL OF SOIL SCIENCE
卷 54, 期 3, 页码 443-451

出版社

WILEY
DOI: 10.1046/j.1365-2389.2003.00485.x

关键词

-

向作者/读者索取更多资源

Accurate estimates of soil hydraulic properties from other soil characteristics using pedotransfer functions (PTFs) are in demand in many applications, and soil structural characteristics are natural candidates for improving PTFs. Soil survey provides mostly categorical data about soil structure. Many available characteristics such as bulk density, aggregate distribution, and penetration resistance reflect not only structural but also other soil properties. Our objective here is to provoke a discussion of the value of structural information in modelling water transport in soils. Two case studies are presented. Data from the US National Pedon Characterization database are used to estimate soil water retention from categorical field-determined structural and textural classes. Regression-tree estimates have the same accuracy as those from textural class as determined in the laboratory. Grade of structure appears to be a strong predictor of water retention at -33 kPa and -1500 kPa. Data from the UNSODA database are used to compare field and laboratory soil water retention. The field-measured retention is significantly less than that measured in the laboratory for soils with a sand content of less than 50%. This could be explained by Rieu and Sposito's theory of scaling in soil structure. Our results suggest a close relationship between structure observed at the soil horizon scale and structure at finer scales affecting water retention of soil clods. Finally we indicate research needs, including (i) quantitative characterization of the field soil structure, (ii) an across-scale modelling of soil structure to use fine-scale data for coarse-scale PTFs, (iii) the need to understand the effects of soil structure on the performance of various methods available to measure soil hydraulic properties, and (iv) further studies of ways to use soil-landscape relationships to estimate variations of soil hydraulic properties across large areas of land.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据