4.4 Article

YqfS from Bacillus subtilis is a spore protein and a new functional member of the type IV apurinic/apyrimidinic-endonuclease family

期刊

JOURNAL OF BACTERIOLOGY
卷 185, 期 18, 页码 5380-5390

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.185.18.5380-5390.2003

关键词

-

向作者/读者索取更多资源

The enzymatic properties and the physiological function of the type IV apurinic/apyrimidinic (AP)-endonuclease homolog of Bacillus subtilis, encoded by yqfS, a gene specifically expressed in spores, were studied here. To this end, a recombinant YqfS protein containing an N-terminal His(6) tag was synthesized in Escherichia coli and purified to homogeneity. An anti-His(6)-YqfS polyclonal antibody exclusively localized YqfS in cell extracts prepared from B. subtilis spores. The His(6)-YqfS protein demonstrated enzymatic properties characteristic of the type IV family of DNA repair enzymes, such as AP-endonucleases and 3'-phosphatases. However, the purified protein lacked both 5'-phosphatase and exonuclease III activities. YqfS showed not only a high level of amino acid identity with E. coli Nfo but also a high resistance to inactivation by EDTA, in the presence of DNA containing AP sites (AP-DNA). These results suggest that YqfS possesses a trinuclear Zn center in which the three metal atoms are intimately coordinated by nine conserved basic residues and two water molecules. Electrophoretic mobility shift assays demonstrated that YqfS possesses structural properties that permit it to bind and scan undamaged DNA as well as to strongly interact with AP-DNA. The ability of yqfS to genetically complement the DNA repair deficiency of an E. coli mutant lacking the major AP-endonucleases Nfo and exonuclease III strongly suggests that its product confers protection to cells against the deleterious effects of oxidative promoters and alkylating agents. Thus, we conclude that YqfS of B. subtilis is a spore-specific protein that has structural and enzymatic properties required to participate in the repair of AP sites and 3' blocking groups of DNA generated during both spore dormancy and germination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据