4.8 Article

Pulsed galvanostatic control of ionophore-based polymeric ion sensors

期刊

ANALYTICAL CHEMISTRY
卷 75, 期 17, 页码 4541-4550

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac034409t

关键词

-

资金

  1. NIGMS NIH HHS [GM59716] Funding Source: Medline

向作者/读者索取更多资源

This paper describes a pulsed galvanostatic technique to interrogate ion-selective electrodes (ISEs) with no intrinsic ion-exchange properties. Each applied current pulse is followed by a longer baseline potential pulse to regenerate the phase boundary region of the ion-selective membrane. The applied current fully controls the magnitude and sign of the ion flux into the membrane, thus offering instrumental control over an effect that has become very important in ion-selective electrode research in recent years. The resulting chronopotentiometric response curves essentially mimic traditional ISE behavior, with apparently Nernstian response slopes and selectivities that can be described with the Nicolsky equation. Additionally, the magnitude and sign of the current pulse may be used to tune sensor selectivity. Perhaps most important, however, appears to be the finding that the extent of concentration polarization near the membrane surface can be accurately controlled by this technique. A growing number of potentiometric techniques are starting to make use of nonequilibrium principles, and the method introduced here may prove to be very useful to advance these areas of research. The basic characteristics of this pulsed galvanostatic technique are here evaluated with plasticized poly(vinyl chloride) membranes containing the sodium-selective ionophore tert-butyl calix[4]arene tetramethyl ester and a lipophilic inert salt.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据