4.4 Article

Comparative characterization of stem cells from human exfoliated deciduous teeth and dental pulp stem cells

期刊

ARCHIVES OF ORAL BIOLOGY
卷 57, 期 9, 页码 1231-1240

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.archoralbio.2012.02.014

关键词

Stem cells from human exfoliated deciduous teeth (SHED); Dental pulp stem cells (DPSCs); Proliferation rate; Osteogenic differentiation; Cell sheet

资金

  1. National Natural Science Foundation of China [81072273, 81171001]

向作者/读者索取更多资源

Objective: This study focused on the characterization of stem cells from human exfoliated deciduous teeth (SHED) in comparison with dental pulp stem cells (DPSCs) to certify SHED as a key element in tissue engineering. Methods: In the present study, SHED and DPSCs were assayed for their cell surface antigens and proliferation by measuring the cell cycles, growth rates, Ki67-positive efficiencies, and colony-forming units (CFUs). The evaluation of multi-differentiation was performed using alizarin red and oil red O and real-time PCR in vitro. The mineralization capability of the cells was examined in vivo by implanting with ceramic bovine bone (CBB) into subcutaneous of immunocompromised mice for 8 weeks. A three-dimensional pellet cultivation system is proposed for SHED and DPSCs to recreate the biological microenvironment that is similar to that of a regenerative milieu. Results: SHED showed a higher proliferation rate and differentiation capability in comparison with DPSCs in vitro, and the results of the in vivo transplantation suggest that SHED have a higher capability of mineralization than the DPSCs. The mRNA expression levels of inflammatory cytokines, including matrix metalloproteinase-1 (MMP1), tissue inhibitors of metalloproteinase-1 (TIMP1), matrix metalloproteinase-2 (MMP2), tissue inhibitors of metalloproteinase-2 (TIMP2) and interleukin-6 (IL-6) were higher in SHED than that in DPSCs. In addition, the expression levels of Col l and proliferating cell nuclear antigen (PCNA) in SHED sheets were significantly higher than those in DPSCs sheets. Conclusions: This study systematically demonstrated the differences in the growth and differentiation characteristics between SHED and DPSCs. Consequently, SHED may represent a suitable, accessible and potential alternative source for regenerative medicine and therapeutic applications. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据